
How to easily identify Miracl functions
 by bLaCk-eye

THEORY:
 This is a small theoretical article describing an idea that could be very useful to
crypto cracker out there.
 Miracl big number library is one of the most used libraries when it comes to
creating protections based on public key algorithms, mostly in crackmes. I have yet to
find a commercial software using it as the fee for commercial use is HUGE ~ 1000$.
So this little technical paper should come into help of those who want to crack crypto
crackmes. All started from one very interesting talk I had with my friend and team
colleague, bRain-FaKKer, which described to me a very easy and interesting way to
identify the miracle functions that crackme uses. As I didn’t found any paper describing it
I give full credit for the idea (which is nothing innovative, read down) to bF!.
 So what’s the idea?
 Well, Miracl has a very useful feature: it allows you to find what function caused
a crash. Taken from miracl’s manual.doc:

“The initial call to mirsys also initialises the error tracing system which is integrated with
the MIRACL package. Whenever an error is detected the sequence of routine calls down
to the routine which generated the error is reported, as well as the error itself. A typical
error message might be

 MIRACL error from routine powltr
 called from isprime
 called from your program
 Raising integer to a negative power

Such an error report facilitates debugging, and assisted us during the development of
these routines. An associated instance variable TRACER, initialised to OFF, if set by the
user to ON, will cause a trace of the program's progress through the MIRACL routines to
be output to the computer screen.”

 So how do we use this in our favor?
 Easy, because miracle must know where the crash happened it uses some
constants to define the functions. How do we know that?
 Well get miracle package and open from “\Source” almost any file. Here is some
code from MrArth3.c:

void power(_MIPD_ big x,long n,big z,big w)
{ /* raise big number to int power w=x^n *
 * (mod z if z and w distinct) */
 mr_small norm;

#ifndef MR_GENERIC_MT
 miracl *mr_mip=get_mip();
#endif
 copy(x,mr_mip->w5);
 zero(w);
 if(mr_mip->ERNUM || size(mr_mip->w5)==0) return;
 convert(_MIPP_ 1,w);
 if (n==0L) return;

 MR_IN(17)

 if (n<0L)
 {
 mr_berror(_MIPP_ MR_ERR_NEG_POWER);
 MR_OUT
 return;
 }
 //rest of the code from file
}

 The code that sets the variable to the function’s name is the bolded one. As you
see it isn’t preceded and followed by any conditional compilation settings. This means
that whatever options you choose when building the library, MR_IN(17) will always be
in the final library.
 How does this get disassembled:
 mov dword ptr [esi+eax*4+20h], 11h
as 11h = 17 decimal;
 You want to identify a miracle function? Easy go inside it, search for instruction
like this:
 mov dword ptr [esi+eax*4+20h], XXh
 Note down XX number and search it in your reference. Or you can use the one I
supplied with this little paper.
 Having all these magic numbers you can identify all the functions from miracl.
The advantage over almost any another way to identify the calls is based on the fact that
this numbers are very unlikely to be changed over versions in opposition with code.
One disadvantage is that you need to check these functions manually. One idea is to make
an IDA idc script that searches for the above instruction types and according to the magic
constant change the function name. If you manage to do it pls mail it to me.
 That’s about all I said to say ;-)

 bLaCk-eye

APPENDIX:

NUMBER OF FUNCTIONS: 08Eh

innum equ 01h
otnum equ 02h
jack equ 03h
normalise equ 04h
multiply equ 05h
divide equ 06h
incr equ 07h
decr equ 08h
premult equ 09h
subdiv equ 0Ah
fdsize equ 0Bh
egcd equ 0Ch
cbase equ 0Dh
cinnum equ 0Eh
cotnum equ 0Fh
nroot equ 10h
power equ 11h
powmod equ 12h
bigdig equ 13h
bigrand equ 14h
nxprime equ 15h
isprime equ 16h
mirvar equ 17h
mad equ 18h
multi_inverse equ 19h
putdig equ 1Ah
add equ 1Bh
subtract equ 1Ch
mirsys equ 1Dh
xgcd equ 1Eh
fpack equ 1Fh
dconv equ 20h
mr_shift equ 21h
mround equ 22h
fmul equ 23h
fdiv equ 24h
fadd equ 25h
fsub equ 26h
fcomp equ 27h
fconv equ 28h
frecip equ 29h

fpmul equ 2Ah
fincr equ 2Bh
;null entry
ftrunc equ 2Dh
frand equ 2Eh
sftbit equ 2Fh
build equ 30h
logb2 equ 31h
expint equ 32h
fpower equ 33h
froot equ 34h
fpi equ 35h
fexp equ 36h
flog equ 37h
fpowf equ 38h
ftan equ 39h
fatan equ 3Ah
fsin equ 3Bh
fasin equ 3Ch
fcos equ 3Dh
facos equ 3Eh
ftanh equ 3Fh
fatanh equ 40h
fsinh equ 41h
fasinh equ 42h
fcosh equ 43h
facosh equ 44h
flop equ 45h
gprime equ 46h
powltr equ 47h
fft_mult equ 48h
crt_init equ 49h
crt equ 4Ah
otstr equ 4Bh
instr equ 4Ch
cotstr equ 4Dh
cinstr equ 4Eh
powmod2 equ 4Fh
prepare_monty equ 50h
nres equ 51h
redc equ 52h
nres_modmult equ 53h
nres_powmod equ 54h
nres_moddiv equ 55h
nres_powltr equ 56h
divisible equ 57h

remain equ 58h
fmodulo equ 59h
nres_modadd equ 5Ah
nres_modsub equ 5Bh
nres_negate equ 5Ch
ecurve_init equ 5Dh
ecurve_add equ 5Eh
ecurve_mult equ 5Fh
epoint_init equ 60h
epoint_set equ 61h
epoint_get equ 62h
nres_powmod2 equ 63h
nres_sqroot equ 64h
sqroot equ 65h
nres_premult equ 66h
ecurve_mult2 equ 67h
ecurve_sub equ 68h
trial_division equ 69h
nxsafeprime equ 6Ah
nres_lucas equ 6Bh
lucas equ 6Ch
brick_init equ 6Dh
pow_brick equ 6Eh
set_user_function equ 6Fh
nres_powmodn equ 70h
powmodn equ 71h
ecurve_multn equ 72h
ebrick_init equ 73h
mul_brick equ 74h
epoint_norm equ 75h
nres_multi_inverse equ 76h
;null entry
nres_dotprod equ 78h
epoint_negate equ 79h
ecurve_multi_add equ 7Ah
ecurve2_init equ 7Bh
epoint2_init equ 7Ch
epoint2_set equ 7Dh
epoint2_norm equ 7Eh
epoint2_get equ 7Fh
epoint2_comp equ 80h
ecurve2_add equ 81h
epoint2_negate equ 82h
ecurve2_sub equ 83h
ecurve2_multi_add equ 84h
ecurve2_mult equ 85h

ecurve2_multn equ 86h
ecurve2_mult2 equ 87h
ebrick2_init equ 88h
mul2_brick equ 89h
prepare_basis equ 8Ah
strong_bigrand equ 8Bh
bytes_to_big equ 8Ch
big_to_bytes equ 8Dh
set_io_buffer_size equ 8Eh

